Applications

Connections

Applications

- **1.** Find the area of every square that can be drawn by connecting dots on a 3 dot-by-3 dot grid.
- 2. On dot paper, draw a hexagon with an area of 16 square units.
- **3.** On dot paper, draw a square with an area of 2 square units. Write an argument to convince a friend that the area is 2 square units.
- **4.** Consider segment *AB* at right.
 - **a.** On dot paper, draw a square with side *AB*. What is the area of the square?
 - **b.** Use a calculator to estimate the length of segment *AB*.
- **5.** Consider segment *CD* at right.
 - **a.** On dot paper, draw a square with side *CD*. What is the area of the square?
 - **b.** Use a calculator to estimate the length of segment *CD*.
- **6.** Find the area and the side length of this square.

A. 3.7 and 3.8 **B.** 3.8 and 3.9 **C.** 3.9 and 4.0 **D.** 14 and 16

Find exact values for each square root.

11. $\sqrt{144}$ **12.** $\sqrt{0.36}$ **13.** $\sqrt{961}$

Find the two consecutive whole numbers the square root is between. Explain.

14. $\sqrt{27}$ **15.** $\sqrt{1,000}$

Tell whether each statement is true.

16. $6 = \sqrt{36}$ **17.** $1.5 = \sqrt{2.25}$ **18.** $11 = \sqrt{101}$

Find the missing number.

19. $$ = 81	20. $14 = $	21. $\blacksquare = \sqrt{28.09}$
22. $$ = 3.2	23. $\sqrt{1} = \frac{1}{4}$	24. $\sqrt{\frac{4}{9}} =$

Find each product.

25. $\sqrt{2} \cdot \sqrt{2}$ **26.** $\sqrt{3} \cdot \sqrt{3}$ **27.** $\sqrt{4} \cdot \sqrt{4}$ **28.** $\sqrt{5} \cdot \sqrt{5}$

Give both the positive and negative square roots of each number.

29. 1	30. 4	31. 2	can't use my
32. 16	33. 25	34. 5	square root key.

- **35.** Find the length of every line segment that can be drawn by connecting dots on a 3 dot-by-3 dot grid.
- **36.** Consider this segment.

- **a.** Express the exact length of the segment, using the $\sqrt{-}$ symbol.
- **b.** What two consecutive whole numbers is the length of the segment between?
- **37.** Show that $2\sqrt{5}$ is equal to $\sqrt{20}$ by finding the length of line segment *AC* in two ways:
 - Find the length of *AB*. Use the result to find the length of *AC*.
 - Find the length of AC directly, as you did in Problem 2.3.

38. Multiple Choice Which line segment has a length of $\sqrt{17}$ units?

F.	٠	٠	٠	•	~		G.	٠	•	•	٠	٠
	٠	•		•	٠			٠	٠	•	•	0
	~	•	٠	٠	٠			•	0	•	•	•
	٠	٠	٠	٠	٠			٠	•	•	٠	٠
	٠	٠	٠	٠	٠			٠	•	•	•	•
Н.	٠	٠	٠	٠	٠		J.	٠	•	•	٠	٠
	٠	٠	•	٠	٠			٠	•	•		•
	•—				-0			-	•	•	•	•
	٠	٠	•	•	•			٠	•	•	•	•
	•	•	•	•	•			٠	•	•	•	•

For Exercises 39 and 40, find the length of each side of the figure.

41. Put the following set of numbers in order on a number line.

2.3	$2\frac{1}{4}$	$\sqrt{5}$	$\sqrt{2}$	$\frac{5}{2}$	$\sqrt{4}$
4	-2.3	$-2\frac{1}{4}$	$\frac{4}{2}$	$-\frac{4}{2}$	2.09

Connections

42. a. Which of the triangles below are right triangles? Explain.

b. Find the area of each right triangle.

- **43.** Refer to the squares you drew in Problem 2.1.
 - **a.** Give the perimeter of each square to the nearest hundredth of a unit.
 - **b.** What rule can you use to calculate the perimeter of a square if you know the length of a side?
- **44.** On grid paper, draw coordinate axes like the ones below. Plot point P at (1, -2).

- **a.** Draw a square *PQRS* with an area of 10 square units.
- **b.** Name a vertex of your square that is $\sqrt{10}$ units from point *P*.
- **c.** Give the coordinates of at least two other points that are $\sqrt{10}$ units from point *P*.

45. In Problem 2.3, you drew segments of length 1 unit, $\sqrt{2}$ units, 4 units, and so on. On a copy of the number line below, locate and label each length you drew. On the number line, $\sqrt{1}$ and $\sqrt{2}$ have been marked as examples.

46. In Problem 2.1, it was easier to find the "upright" squares. Two of these squares are represented on the coordinate grid.

- **a.** Are these squares similar? Explain.
- **b.** How are the coordinates of the corresponding vertices related?
- **c.** How are the areas of the squares related?
- **d.** Copy the drawing. Add two more "upright" squares with a vertex at (0, 0). How are the coordinates of the vertices of these new squares related to the 2 \times 2 square? How are their areas related?

Connections Extensions

Extensions

- **47.** On dot paper, draw a non-rectangular parallelogram with an area of 6 square units.
- 48. On dot paper, draw a triangle with an area of 5 square units.
- **49.** Dalida claims that $\sqrt{8} + \sqrt{8}$ is equal to $\sqrt{16}$ because 8 plus 8 is 16. Is she right? Explain.
- **50.** The drawing shows three right triangles with a common side.

- **a.** Find the length of the common side.
- **b.** Do the three triangles have the same area? Explain.

We know that $\sqrt{5} \cdot \sqrt{5} = \sqrt{5 \cdot 5} = \sqrt{25} = 5$. Tell whether each product is a whole number. Explain.

- **51.** $\sqrt{2} \cdot \sqrt{50}$
- **52.** $\sqrt{4} \cdot \sqrt{16}$
- **53.** $\sqrt{4} \cdot \sqrt{6}$